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Abstract

Smartphones have advantages over specialist systems for extending crop monitoring,
including ubiquity, price, user familiarity and ease of implementing updates.

This project evaluated a range of smartphone based tools for measuring vine water status.
Irrigation deficit treatments were applied to grapevines in the Riverland of South Australia.
Water status measurements from smartphone based sensors were benchmarked against
conventional methods including stem water potential and stomatal conductance.

A thermal infrared camera system was selected as the most accurate and robust option for
development into an app, which was tested by viticulturists in 2017.



Executive summary

Smartphones contain a variety of sensors that have the potential to monitor the surrounding
environment and provide an aid to decision making across a range of industries, from
medicine through to agriculture. Smartphones have several advantages over specialist
monitoring systems, including ubiquity, price, user familiarity and the ease of implementing
updates. They also contain sufficient computing power, so the analysis and support software
can be contained within the phone.

A range of methods has been developed for the assessment of vine water status — however
none currently meets the affordability, portability and ease of use requirements for wide scale
adoption. A wide range of sensors could potentially be interfaced with smartphones to assess
vine moisture status. The aim of this project work was to evaluate a range of smartphone
based tools for measuring vine water status, leading to the development of the most
promising tool into a smartphone application that can be easily used by vineyard managers.

Systems that were evaluated included:

. An infrared camera that is integrated into or connected directly to the smartphone and
uses established techniques for the analysis of thermal imagery to assess water status;

. A portable Near Infrared spectrophotometer that interfaces with the phone and
measures reflectance across relevant wavelengths for the calculation of water status
indices;

. A 3D camera that is integrated into or connected to the phone via Wi-Fi and can use
image analysis to assess the shape or orientation of the leaves;

. A microscope attached to the smartphone camera or as a separate portable unit that
can be used to measure stomatal number and aperture and then calculate stomatal
conductance.

A trial site with a range of irrigation deficit treatments applied to Chardonnay and Cabernet
Sauvignon grapevines was established in the Riverland of South Australia. Water status
measurements from the smartphone based sensors described above were benchmarked
against conventional methods including mid-day stem water potential and stomatal
conductance.

The thermal infrared camera system, measuring the Crop Water Stress Index (CWSI), was
selected as the most accurate and robust option for development into an app. The app was
tested during the 2017 growing season to demonstrate its accuracy and confirm that the most
appropriate indices were being used. User acceptance testing was also completed by
viticulturists to assess its utility with further improvements being made during the season
based on feedback from this testing. Positive feedback on the utility of the app was received
from the beta testing group. Over the 33 days of formal assessment, the CWSI, as calculated
by the app, had a strong relationship with the reference methods of mid-day stem water
potential (R? = 0.62) and stomatal conductance (R? = 0.74).

There is a range of scenarios where CWSI could be used to inform irrigation scheduling,
which could complement or replace existing soil moisture monitoring systems. Regular
assessment of the CWSI in a vineyard will help develop an understanding of what values to
expect from different blocks or varieties. If the target is to maximise vineyard yield then
water stress needs to be avoided, while not applying excessive water. Checking the CWSI
immediately prior to applying irrigation would confirm that no stress had occurred.
Preliminary estimates suggest that a CWSI of less than 0.7 recorded from a shaded canopy on
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a hot day, or 0.5 on a cooler day would indicate vines are well irrigated. If the target is to
optimise quality and minimise water use as part of a regulated deficit irrigation strategy, then
the CWSI could also be used to inform irrigation decisions. If the vines are being maintained
at a moderate water deficit (for example during the post flowering period) then irrigation
could be withheld if the CWSI is below approximately 0.8 assuming very hot weather is not
forecast. Tracking the CWSI over time may give a viticulturist more confidence to extend the
period between irrigation applications. Soil moisture monitoring systems are normally point
based at a limited number of sites across a vineyard; it is uncommon for all the blocks within
a vineyard to be covered. The thermal camera is very portable and can be used to compare
different parts of a block and across blocks. This system provides an easy opportunity to
check sections of a block that may not be receiving enough water, and benchmark these
against the section adjacent to the soil moisture probe.

If the app is developed further and maintained so that it can be used by the wine industry,
then the savings in water applications are likely to occur as growers will be able to easily
assess their vineyards irrigation needs. Fruit quality will also potentially be improved through
the better management of regulated water deficit, and by applying strategic irrigations to
maintain canopy health and avoid defoliation.

This project was completed as a collaboration between the South Australian Research and
Development Institute (SARDI) and the University of New South Wales (UNSW). The
measurement of vine water status was completed by SARDI at the Loxton Research Centre,
and the image analysis and app development were completed by UNSW in Sydney.



Background

Smartphones contain or can be attached to a variety of sensors that have the potential to
monitor the surrounding environment and provide an aid to decision making across a range of
industries, from medicine through to agriculture. Smartphones have many advantages over
specialist monitoring systems including ubiquity, price, user familiarity and the ease of
implementing updates; they also contain sufficient computing power, so that the analysis and
support software can be contained within the phone (Ozdalga et al. 2012).

A range of methods has been developed for the assessment of vine water status — however
none currently meet the portability and ease of use requirements for wide scale adoption.
Measures of water availability in the agricultural environment are important both for the
efficient use of a valuable and increasingly scarce resource (e.g. Gerten et al. (2011)) and to
produce high quality produce (Fereres and Evans 2006). There is a wide range of plant and
soil water status assessment systems available for commercial use in Australia (Charlesworth
2005, White and Raine 2008), with soil based sensors being by far the most popular in
Australian viticulture where use is reported by more than 60% of growers (Green and
Griffante 2009). Soil based systems are often preferred in the commercial environment
because of their robustness, few maintenance requirements, familiarity among users and
suppliers and low skilled labour requirements once installed (Charlesworth 2005).

An easy, portable and cost-effective system for the direct and real-time assessment of vine
water status remains a challenge for all agricultural industries (Jones 2004). As water
resources become scarcer, the use of irrigation to optimise yield and quality will only
increase in importance to the industry. Plant based monitoring systems are often used in a
research context, but unfortunately their application to commercial production has been
limited (Naor 2006). The direct indication of plant water status and ability to avoid symptoms
that result in a reduction in productivity or quality are key positive attributes of measuring
plant water status (Jones 2004). In addition, most soil based sensing systems, especially those
designed to measure to a depth (1m and below) relevant for perennial crops, are point based
and do not allow variation across an orchard or vineyard to be easily assessed. Plant based
sensors are often far more portable as they can be easily moved between plants.

Water potential (pre-dawn, leaf and stem) as measured by the Scholander pressure chamber
(Scholander et al. 1964) is the most widely accepted direct sensing method (Jones 2004).
There are several limitations to the commercial use of this technique in Australian viticulture,
including the extensive labour requirements, operator safety, inconsistency between operators
and the requirement for leaf pre-bagging.

Alternative measurement techniques including infrared cameras and leaf NIR spectrometry
have been researched; however, we are not aware of any commercial systems that are
available in these areas. The cost of hardware and specialist systems is a likely impediment to
their development. Smartphones are a ubiquitous business tool and are the ideal mount for a
plant based water sensor, given their portability and ease of access to software updates. They
are generally equipped with high resolution cameras, or can have specialist sensors such as
microscopes, stereo cameras, thermal cameras or spectrometers attached.

The development of a smartphone based system to assess water stress in vines would promote
the broader uptake of water stress monitoring across the viticulture industry, potentially
improving water use efficiency and fruit quality. We investigated four smartphone based
systems, to determine their viability to assess vine water status.

7



Spectroscopy

Near infrared (NIR) spectroscopy is a commonly used, non-destructive method to analyse
components of agricultural and food products (e.g. Cozzolino et al. (2006)). The NIR region
of the electromagnetic spectrum (730-2300 nm) contains wavelength ranges that are affected
by the sample water content or concentration. These include strong NIR absorption bands of
water around 1400-1440 nm and between 1900 to 1950 nm, which have often been applied to
the quantitative analysis of water content in food (e.g. Cozzolino et al. (2006)). Wavelength
bands related to water have also been utilised in NIR reflectance with proximal and remote
sensing applications to determine water content and water status of plants (e.g. Pefiuelas et al.
(1993)). De Bei et al. (2011) evaluated the measurement of the water status of grapevines
using a spectrophotometer; compared to midday leaf water potential measured on an adjacent
leaf on the same shoot. The NIR showed good predictive ability for stem water (Wstem)
potential for each of the three grapevine varieties assessed, suggesting that NIR can be used
as a simple and rapid method to detect grapevine water status. Unfortunately, the equipment
used to complete this analysis was very expensive (more than $25,000), meaning that it is not
easily accessed by growers.

Camera based leaf angle

The canopy morphology (leaf orientation and angle) changes as water stress develops in
grapevines (and most other plants). Experienced managers can tell if irrigation is required
based on observation — however this is largely intuitive with no direct relationship between
canopy appearance and water stress. Research in the 1970s demonstrated a relationship
between the angle formed between the leaf midrib and the petiole with vine water stress
(Smart 1974); however, collecting these measurements was very onerous. Stereo vision
makes use of the disparity between two offset cameras to build a depth map which represents
the scene in three dimensions as viewed from the perspective of the camera. More recently a
stereo camera and a local edge detection algorithm were used to make simple measurements
of leaf angles (relative to the ground) and these were used as an indication of water stress
(Mizuno et al. 2007). Image analysis of photos collected by a smartphone may be able to
determine these leaf traits in real time based on the angle or the cupping of the leaves.

Stomatal aperture

The stomata are the pores on the leaf that regulate the gas flow (stomatal conductance, gs)
and control photosynthesis and transpiration. Under water stress conditions the stomata will
close to prevent the leaves desiccating. The stomata are small and cannot be seen with the
naked eye. Currently, stomatal number and aperture are assessed by taking an imprint of the
leaf and analysing this under a microscope in the lab, however these measurements aren’t
used for irrigation scheduling Sadras et al. (2012). Stomatal number and aperture have also
been assessed directly (usually in the lab) using a camera mounted in an optical microscope
(Kappen et al. 1995). There is a variety of high powered magnifying attachments (up to 200x)
available for smartphone cameras that may allow images of suitable quality to be collected so
that stomatal aperture, and the proportion of closed stomata can be assessed in the field. If the
area of the open stomata pores, relative to the image (or leaf) area is known then the gs can be
calculated (Lawson et al. 1998), if this method is to be used successfully then a sampling
regime to overcome the impact of stomatal patchiness would also be needed (Diiring and
Stoll 1996).



Thermal imaging

An alternative plant based method of assessing water status is based on the measurement of
water use by the plant. This is assessed as gs to water vapour or the transpiration (similar to
evaporation) of water from the leaf/canopy. This can be completed by using a porometer or
other devices that can directly measure the gas exchange of individual leaves; however, the
logistics of measuring individual leaves across a canopy make these methods difficult (Costa
et al. 2013). As a surrogate for the direct measurement of water loss by leaves, leaf (or
canopy) temperature can be measured, based on the principle that the reduction in
temperature is proportional to the amount of water lost from the leaves and the associated
evaporative cooling. On this basis when the stomata close, transpiration stops, and the leaf
temperature increases; when the stomata open, transpiration increases and canopy
temperature drops (Brown and Escombe 1905).

The principle that infrared thermometry can be used as an indicator of plant water stress was
first developed in the 1960s (Tanner 1963), and the technological improvements over the last
50 or more years has allowed the refinement of these techniques for the assessment of plant
water status. Infrared cameras are now available that are integrated into or able to be
connected directly to the smartphone. These systems can potentially be used to assess the
irrigation requirements of crops and meet the portability and ease of use requirements for
wide scale adoption. Solutions have been developed that allow gs to be estimated directly
from canopy temperature and a range of other meteorological inputs (Guilioni et al. 2008,
Leinonen et al. 2006). In addition, simple indices have been developed that can convert the
canopy temperature measurements into a value suitable for irrigation scheduling, such as the
Crop Water Stress Index (CWSI).



Project Aims and Performance targets

This project aimed to evaluate a range of smartphone based sensing systems and to develop a
system that can assess vine water stress in an accurate and reproducible manner. This method
would be developed into a smartphone application and user acceptance testing completed to
integrate the preferred technology into a tool to assess vine water status.

The project was split over two seasons; the first season focused on assessing the hardware
and software options for each of the four proposed techniques:

e Spectrometer (SCiO molecular sensor)

e 3D Camera based leaf angle (Stereo camera system; GoPro and Fujifilm FinePix
Real 3D)

e Stomatal aperture (Smartphone based microscopes, ProScope Micro Mobile,
ProScope EDU and ProScope HR2)

e Thermal Camera (FLIR One and Seek).

At the end of the first season the accuracy of each of the techniques was assessed, and the
preferred candidate technology selected based on accuracy and ease of use. Measurements
were conducted at the SARDI Loxton Research Centre and image analysis was completed at
the UNSW in Sydney. Development of the beta version of the app was completed by a
contractor working with the UNSW.

The preferred assessment system (the FLIR One, thermal camera) was chosen on the
completion of the first season of assessments. During the second season the technique was
validated based on measurements taken from vines at the Loxton Research Centre. The image
analysis process and calibration of the results against standard methods were refined by
UNSW. Beta testing of the application was completed by potential users across a range of
regions and varieties and feedback on the app utility and how it could be improved was
sought. The app was improved during the season based on feedback from the beta testers.
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Method

Four methods of estimating vine water status, that could potentially be based on a
smartphone, were compared to stem water potential (Wstem, measured with a pressure
chamber), and stomatal conductance (gs, measured using a porometer).

Trial site and sampling regime

Trial vines were located at the Loxton Research Centre, and consisted of a plot of Cabernet
Sauvignon managed to four irrigation levels (namely 100%, 75%, 50% and 12.5% of
evapotranspiration throughout the season), and a plot of Chardonnay both fully irrigated
(100% evapotranspiration) and a deficit irrigation regime imposed two weeks prior to the first
assessments of vine water status. Measurements of vine water status were collected on the six
treatments (four Cabernet Sauvignon and two Chardonnay) on five dates during February and
March 2016 (season one) and 33 dates between December 2016 and March 2017 (season
two). On every date, reference measures including gs (porometer) readings from four shaded
leaves and Wstem (pressure chamber) from three leaves per vine were collected (see below).
During season one, vines were assessed using the four potential analysis methods,
spectrometer, 3D Camera based leaf angle assessment, imaging of stomatal aperture and
thermal imaging of canopy temperature (more details on these methods are provided below).
The aim of sampling across a range of dates was to provide a wide range of weather
conditions so the robustness of all techniques could be assessed.

Reference methods

Two standard measures of vine water status were used. Measurements of Wsem Were made
using a pressure chamber; model 3000 (Soil Moisture Equipment Corporation, Santa Barbara,
CA, USA) with the standard analog gauge replaced with a 0-5 MPa digital gauge (DG 25,
Ashcroft, Stratford, Connecticut, USA). The method of Choné et al. (2001) was followed:;
briefly, leaves were enclosed in an aluminium foil covered bag for at least one hour prior to
measurement so that leaf water potential could equilibrate with Wseem. Measurements of gs
were made using a SC-1 Leaf Porometer (Decagon Devices, Pullman, Washington, USA),
following the operating instructions for this device.

Spectroscopy

The SCiO™ Pocket Spectrometer (Consumer Physics, Tel-Aviv, Israel) uses the Bluetooth
protocol to communicate with a smartphone, which acts as a controller and provides access to
the internet for cloud based data analysis. The SCiO™ was used to capture reflectance
responses across a narrow band of wavelengths (740 to 1070 nm) from ten leaves on each
treatment vine on each data collection date during season one. A white tile was used as a
backing for the leaf, as results varied when different backing materials were used. The
resulting spectral signatures were analysed against Wsteem and gs using the proprietary
multivariate statistical software on the SCiO™ Lab website
(https://sciolab.consumerphysics.com/). For this analysis, wavelengths in the 870-1000 nm
range were used and the spectra were pre-processed by subtracting the minimum values and
then taking the second derivative prior to calculation of the partial least squares regression.
The Water Band Index was also calculated based on the reflectance at 970 nm divided by the
reflectance at 900 nm (Pefiuelas et al. 1993) and this was compared to the results from the
reference methods.
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Stomatal aperture

Three microscopes that could be attached to a smartphone were trialled, the ProScope Micro
Mobile (80x magnification), ProScope EDU (300x magnification), and ProScope HR2 (400x
magnification). The microscope systems were all manufactured by Bodelin Technologies
Wilsonville, OR, USA. The Micro Mobile was able to use the smartphone camera, while the
other systems used their own cameras as well as lighting and optics. There are many similar
products on the market, unfortunately most have exaggerated magnification and resolution
claims that include the size that the image will appear on a computer monitor. There was a
delay in the delivery of the highest resolution microscope, so as a substitute, nail polish
stomatal peels (Gitz and Baker 2009, Meister and Nordenkampf 2001) were collected from
leaves so the image analysis and sampling regime could be further developed if this approach
appeared promising. The images of the stomatal peels were analysed using a cascade object
detection algorithm; in this case the Viola-Jones face detection algorithm was retrained to
detect stomata (Viola and Jones 2004). Cascade object detection is well suited to this analysis
as it assumes that a large proportion of the image does not contain the object of interest and
the aspect ratio does not change significantly. Once the Regions of Interest (ROIs) containing
the individual stomates had been identified, the ROIs were binarised and skeletonised to
detect the actual pore. More detail on the analysis method is presented in Jayakody et al.
(2017), please refer to the Communications section.

3D Camera based leaf angle

The three-dimensional images were taken with two GoPro Hero3+TM cameras mounted in
the 3D Dual Hero System (both GoPro, San Mateo, California, USA) and linked to a
smartphone to provide a viewfinder capability. Images were also collected using a FinePix
Real 3D camera (Fujifilm, Minato, Japan). The leaves were displayed with a black cardboard
backing with a hole to allow the petiole through. The black backing ensured the leaves were
easily distinguishable from the background and a scale was included to allow the leaf size
and shape to be calculated. Two methods were trialed in order to measure leaf shape or
cupping.
1) The scale-invariant feature transform (SIFT) algorithm was used to identify and
match the location of features (nominally the leaf edges) between the two leaf images.
This technique relies on identifying the same location on each of the paired images to
calculate their locations in three dimensions.
2) A Structure from Motion (SfM) technique (Zhang et al. 2016) was used to develop a
3D point cloud from the pair of stereo images. The point cloud was then examined to
determine the degree of cupping.

Thermal imaging — Season 1

Two smartphone based thermal camera systems, the FLIR™ One (Wilsonville, Oregon,
USA) and the Seek™ Thermal (Santa Barbara, California, USA) were benchmarked against a
professional thermal camera (FLIR B365, FLIR Wilsonville, Oregon, USA) during the first
season. The Seek™ Thermal had a 206 x 156 pixel resolution sensor, a 36° diagonal field of
view and a manual focus lens. The long wave infrared sensor had a range of 7.5 to 14 um and
the camera could measure over a temperature range of -40°C to 330°C. The Seek™
application allowed the user to move between an image from the smartphone camera and the
thermal image to make orientation easier (Anon 2015a). The FLIR™ One (Wilsonville,
Oregon, USA) thermal camera was selected for this project, it has a 160 x 120 pixel
resolution. The system includes a second VGA (640 x 480 pixel resolution) camera mounted
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adjacent to the thermal sensor, and software that generates an overlay which defines the
border of the objects in the image making it easier to orientate and focus. The camera has a
long wave infrared sensor with a range from 8 to 14 um and the lens has a field of view of
46° horizontal and 35° vertical. The camera measured over a temperature range of -20°C to
120°C (Anon 2015b).

The crop water stress index (CWSI) was calculated based on the equation modified from Idso
(1982) by Jones (1999) for the use of wet and dry reference leaves:

CWSI = Tcanopy - Twet
Tdry - Twet

Where Tcanopy is the shaded canopy temperature (°C) obtained from the thermal image, and
Tary and Twet are the reference temperatures (°C). Tary Was initially obtained by painting the
abaxial side of the leaf with petroleum jelly (Tarypet) (Vaseline, Unilever, London, U.K.)
(Idso 1982, Jones 1999). Twet was the temperature of leaves regularly sprayed with water and
a little dishwashing soap during measurements (Twet(leaf))-

Images were collected from the shaded side of the canopy for all measurements, as this
allowed the assessment of vine water status across a wider range of conditions, especially
intermittent cloud cover. The canopy temperature and the wet and dry reference temperatures
were manually selected using the rectangular or circular selection tools respectively, and
extracted from the images using the FLIR Tools™ software.

Thermal imaging — Season 2

During the second season the application development and further validation of the methods
focused on using the FLIR™ One thermal camera. Applying water or petroleum jelly directly
to leaves was unlikely to be a practical option for growers, so a range of fabric references was
tested as alternatives to real leaves. This also allowed the reference surfaces to be coloured,
which made them easier to identify in the images. Tary Was replicated using a red fabric
reference surface (Tdry(fan)) Similar to Maes et al. (2016), but coloured red, a detached leaf
(Tarygean) Was also trialled. Twet was also replicated using a fabric reference surface (Twet(fan))
again similar to Maes et al. (2016), and coloured red. A fabric wick was submerged in a
bottle of water to ensure that the Twetab) remained moist. A range of terrycloth fabrics was
evaluated for the Taryrab) and Twet(fan) during initial testing and significant differences in the
relationship between fabric and leaf based reference surfaces were observed. To have a
consistent supply of fabric that could be easily accessed by growers or researchers we
selected a towel that was distributed globally (Fréjen, IKEA, Leiden, Netherlands).

Other temperature based indices of crop water status are available, and these were also
assessed during the second season. These indices are potentially more accurate under humid
conditions or would allow water stress to be assessed without the need for the Tary Or Tuwet.

The CWSI can be rearranged as proposed by Jones (1999) to give the conductance index (Ig):

Ig=" Tdry — Tcanopy
Teanopy = Twet

Where 1g is proportional to the gs and therefore decreases as the stomata close and the
differential between the Twet and the Tcanopy increase. The Ig is more sensitive to changes in
plant water status when the water deficit is low, making it suitable for use in humid
conditions or where less water stress is present (Jones 1999).
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A series of formulae has also been derived from the basic leaf energy balance (Jones et al.
2002) to calculate gs directly from canopy temperature and a combination of environmental
variables and reference leaf temperatures (Guilioni et al. 2008, Leinonen et al. 2006). These
formulae potentially offer the advantage of allowing plant water status to be calculated based
on meteorological parameters (collected by a weather station adjacent to site) without the
requirement to erect the wet and/or dry reference surfaces.

The first formula is calculated directly based on canopy temperature and environmental
parameters (net isothermal radiation, wind speed, air temperature and relative humidity),
(Leinonen et al. 2006):

Os(no ref) = 1
-p X Cp X FHR X (S(Tcanopy~Tair)+D)/(Y'(Tieat-Tair) X p X Cp -rHR X Rni))-Taw

Where p is the density of air (kg.m™), ¢, is the specific heat capacity of air (J.Kg™.K?), s is
the slope of the curve relating saturated water vapour pressure to temperature (Pa.°C™?), rur is
the parallel resistance to heat and radiative transfer (s.m™), D is the air vapour pressure deficit
(Pa), Y is the psychrometric constant (Pa.K™), Rni is the net isothermal radiation (the net
radiation for a leaf at air temperature (W.m™) and raw is the leaf boundary layer resistance to
water vapour (s.m™).

The second formula avoids the need for the measurement of absorbed radiation by using Tary
(Leinonen et al. 2006):

Os(dry) = 1 .
-p X Cp X 'R X (S(Tcanopy'Tair)+D)/(Y(Tleaf'Tair) XpXCpX (Tcanopy'Tdry)))'raW

Complementing the above calculations; gs can also be calculated based on environmental
parameters and the wet and dry reference surfaces. The most appropriate formula for
grapevines assumes the reference surface is wet on both sides and the leaves are
hypostomatous (stomata on the lower side) (Guilioni et al. 2008).

Os(dry&wet) = 1
(raw/2 + (s/Y’) X ruRr) X (Tcanopy - Twet)/(Tdry — Tcanopy) - raw/2

For the automatic detection of the canopy temperature and wet and dry reference
temperatures, the images were analysed as follows. The thermal image in the proprietary
FLIR™ MSX format was processed using a 7 x 7 pixel gaussian smoothing filter to reduce
noise. A binary reference mask corresponding to the red areas in the RGB image (the wet and
dry references) was generated by converting the RGB (Red, Green, Blue) image to HSV
(Hue, Saturation, Value) format and selecting the red portion of the image as having values,
H: 328 — 366, S: 0.47 — 1.0 and V: 0.21 — 1.0. Noise (random variation across the binary
image) was removed using two series of filters of different sizes. A 5 x 5 pixel erode filter
and then a 7 x 7 pixel dilate filter were used to remove speckles followed by a 11 x 11 pixel
erode filter and a 9 x 9 pixel dilate filter to close any gaps. The filter was also applied to the
thermal image with a 15-pixel inset to avoid errors due to poor focus of the thermal image or
misalignment of the original RGB and thermal images. The thermal data in the wet and dry
references were divided into contours at 0.1°C intervals and the warmest (dry reference) and
coldest (wet reference) section of the image, that was greater than 50 pixels in size, was
selected.

14



To calculate the canopy temperature a second binary mask was created from the thermal
image. All sections of the image that contained temperatures that were hotter than the dry
reference and cooler than the wet reference were excluded (Fuentes et al. 2012). The image
noise and potential errors due to poor focus were managed using the filters and inset
described above. Both filters were applied to the RGB image, so it could be displayed on the
screen of the smartphone to allow the user to check that the filter had worked correctly and
highlighted the wet and dry references. Originally a slider bar was provided to allow the
upper and lower temperature thresholds to be adjusted to better define the portion of the
image that was considered canopy; however, this feature was found difficult to use by the
user acceptance testers (see below). The canopy was occasionally not well defined in test
images so an additional binary filter, to exclude the background (non-canopy) from the image
was added. The filter was based on a Naive Bayes classifier trained on the RGB images of the
canopy. This is a supervised classification technique for constructing classifiers of a
probabilistic graphical model. The canopy temperature was automatically calculated from the
remaining portion of the image once the masks were used to exclude the image background
and the reference surfaces. Once again, a 15-pixel inset was used to avoid errors due to poor
focus of the thermal image or misalignment of the original RGB and thermal images.

User acceptance testing

For user acceptance testing a system was distributed to 16 reviewers comprising the FLIR™
One and an Android Smartphone (A1601, Oppo, Dongguan, Guangdong, China). The
application was configured to automatically synchronise measurements with a server every
time the phone was connected to Wi-Fi (a SIM card was not installed), this allowed camera
usage to be tracked and diagnostics easily provided for any user issues. The application and
its instructions were refined and updated throughout the 2016-17 growing season, with
updates to the software version uploaded to the phones when they were connected to Wi-Fi.
Refinements included changes in the CWSI formula to account for differences between the
Tarypet) aNd Tadry(fab), aNd Twet(ear) &N Twetfab). IMprovements to the system for the automatic
delineation of the canopy (see above) meant that the slider bar to help exclude the image
background based on temperature could be removed. After harvest the user acceptance testers
were surveyed around the utility of the application and their intentions for further use if it was
made publicly available (Table 1), this was followed up by a phone or in person interview.
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Results and discussion

Spectroscopy

The SCiO was able to collect leaf reflectance spectra across the range of wavelengths from
740 to 1070 nm including the range from 870 to 1000 nm which contains the region that is
highly sensitive to water (Figure 1 and Figure 2). The app required a connection to the
internet via a smartphone for the spectrophotometer to work effectively. Variable mobile
phone coverage at the trial site Loxton sometimes limited the operation of the spectrometer,
but overall the equipment performed adequately. The SciO software allowed the development
of models by which spectrometer measurements were used to estimate measured parameters,
in this case Wstem and gs, and then analysed the relationship between the measured and
estimated values. The partial least squares (PLS) model generated for the Wseem (Figure 3, r?
0.78) was much more reliable than the model developed for gs (Figure 4, r2 0.36). The model
was less accurate low measured water potential values, with the estimated values remaining
relatively high, indicating that the spectrometer was unable to differentiate MDSWP at values
below -1.5 MPa. The relationships between Water Balance Index and Wsem Or gs was very
poor, and this is unlikely to be a useful metric when collected using the SCiO (Figure 5 and
Figure 6).

Stem Water
Potential Classes

Reflectance

Wavelength (nm)

Figure 1

Reflectance spectra of Cabernet Sauvignon leaves collected by the SCiO and grouped by
Wstem. Spectra have been processed by subtracting the minimum values and calculating the
second order derivative.
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Figure 2

Reflectance spectra of Cabernet Sauvignon leaves collected by the SCiO and grouped by gs.
Spectra have been processed by subtracting the minimum values and calculating the second
order derivative.
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Figure 3

Relationship between the Wseem measured using a pressure chamber and the estimated Wstem
based on leaf spectral reflectance collected by the SCiO for Cabernet Sauvignon.
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Figure 4

Relationship between gs measured using a porometer and estimated gs based on leaf spectral
reflectance collected by the SCiO for Cabernet Sauvignon.
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The relationship between the Wseem measured using a pressure chamber and Water Band Index
(reflectance at 970nm/900nm) measured using the SCiO for Cabernet Sauvignon and
Chardonnay.
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Figure 6
The relationship between gs measured using a porometer and Water Band Index (reflectance
at 970nm/900nm) measured using the SCiO for Cabernet Sauvignon and Chardonnay.

Stomatal aperture

Despite trialling three models of smartphone compatible microscopes; we were unable to
directly collect images of suitable resolution and clarity in the field to allow the stomatal
density and aperture to be analysed directly. While the stomata could be distinguished in the
best example images (Figure 7), we struggled to collect images of this quality consistently in
the vineyard. As an alternative, while higher resolution microscopes were being investigated,
we collected and analysed stomatal peels. The analysis of images of stomata impressions in
nail polish proved successful with a precision of over 90% recorded for test images. This was
better than the 50-60% precision seen by other authors, and further details are presented in
Jayakody et al. (2017), please refer to the Communications section. Unfortunately, until
microscopes with higher resolution and better lighting systems are available for mounting on
smartphones, this technique is not practical for field use.
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Figure 7
Example image of stomata on the underside of a grapevine leaf collected with a ProScope

HR2. This image was collected in the laboratory under ideal conditions.

Figure 8
Example image of a stomatal peel collected using nail polish applied to a leaf and then

photographed on a binocular microscope.

3D Camera based leaf angle

The scale-invariant feature technique (SIFT) used to determine sparse correspondences
between the stereo leaf images failed to detect the leaves in this situation (Figure 9). The
uniform black background was effectively featureless, meaning its position with respect to
the camera could not be accurately characterised. The leaf itself was also relatively
featureless, hence very few points on the surface could be correlated between the images and
then used to obtain depth values that would have been an indication of cupping. While the
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chequerboard pattern provided clear features, it does not contribute to measurement of the
leaf. Hence this method was not effective for measuring leaf shape.

An alternative method to estimate leaf shape using structure from motion was also tested.
This generated a 3D point cloud for each leaf (Figure 10); the missing segments of the leaf
are due to homogeneous surface textures causing the matching to be inaccurate (Zhang et al.
2016). This process was also computationally expensive, taking several minutes per leaf as it
employs a global matching algorithm. Unfortunately, when the leaves were profiled, the
amount of cupping that was detected was quite small, even on the severely water stressed
treatments (Figure 10). This suggests that insufficient differentiation between stressed and
unstressed leaves could be observed by analysing the amount of leaf cupping.

Figure 9
Scale-Invariant Feature Transform feature matching between stereo images, showing lack of

features detected on leaf.
o | img . Lr ol
1‘2?%:‘
q:\‘ g 2
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Figure 10
Front (left) and side (right) view of the leaf image generated using dense stereo matching,
note the very limited variation in depth in the side view image.

Thermal imaging — Season 1

Of the two smartphone based thermal camera systems used, the FLIR™ One provided images
that were clear and easier to interpret compared to the Seek (Figure 10 and Figure 11). This
meant that the temperatures of wet and dry reference surface temperatures were significantly
easier to extract from the FLIR™ One images compared to the Seek images. The resolution
of the professional thermal camera (FLIR 365) was significantly better than either of the
smartphone based cameras (Figure 12), however the cost of these cameras is up to 100 times
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the smartphone based systems and they do not contain the onboard processing capability to
analyse the image and estimate water stress.

The CWSI was calculated based on the Tcanopy, Twet(ieafy @Nd Tarygean. VWhen these calculations
were compared to the reference methods, Wsem (Figure 14) and gs (Figure 15), they gave the
most consistent and robust results. Therefore, this method was developed further during the
second season to confirm its accuracy and utility.

Figure 11

Thermal image collected by the FLIR One camera, note the outline provided by the RGB
camera which makes the thermal camera easier to orientate. (a) represents wet filter paper, (b)
represents a wet leaf and (c) represents dry filter paper.
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Figure 12
Thermal image collected by the Seek camera. (a) represents wet filter paper, (b) represents a

wet leaf and (c) represents dry filter paper.
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Figure 13
Thermal image collected by the FLIR 365B camera, note the higher resolution provided by a

professional camera. (a) represents wet filter paper, (b) represents a wet leaf and (c)
represents dry filter paper.
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Figure 14

The relationship between Wsiem and CWSI as assessed during the 2015-16 growing season.
Results were collected from both Cabernet Sauvignon and Chardonnay (see methods for
more details of the plant material).
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Figure 15
The relationship between gs and CWSI as assessed during the 2015-16 growing season.

Results were collected from both Cabernet Sauvignon and Chardonnay (see methods for
more details of the plant material).
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Thermal imaging — Season 2

The selection of the canopy, so that Tcanopy Can be determined, and the accurate assessment of
Tary and Tuwet are critical to the calculation of gs and the water stress indices. The application
appeared to accurately select the canopy and the Tary and Twet in almost all cases (e.g. Figure
16). The reliability of the canopy selection was assessed by comparing canopy temperatures
calculated from a manually selected portion of the canopy and the fully automated selection.
A strong, 1:1 relationship, was seen between the manually selected section of the canopy and
the fully automated method (Figure 17), this gave us confidence in the methods used to select
the canopy.

A second assessment was completed to determine the accuracy of using artificial Tary and
Twet as substitutes for leaves treated with sprayed water or petroleum jelly. The temperature
of the Tary(pety Was used as the benchmark comparison to the temperature of the Tary(fan) and
the Tarygean. A strong relationship was seen between the Taryety and both the Taryran) and the
Tarygea) (Figure 18 and Figure 19), however, this relationship was not 1:1 in either case. The
relationship between Tuwet(eary aNd Twet(fan) Was not as strong as between the dry temperature
references, however the R? was above 0.87 and once again, the slope was not 1:1 (Figure 20).
As the relationship between the leaf and the fabric based Tary and Twet Was not 1:1, a
correction factor was developed for use prior to the calculation of the indices so that the
values were equivalent to those collected from the Twet(iear) and Tdry(iean).

Indices calculated from the canopy temperature were compared to gs (Figure 21, Figure 22,
Figure 23, Figure 24 and Figure 25) and Wstem (Figure 26, Figure 27, Figure 28, Figure 29,
Figure 30). The relationships between gsporometery and the indices was linear, while the
relationships between Wsem and the indices was best predicted using a curvilinear model. The
CWSI showed the strongest relationships with both gs(porometery and Wstem (Figure 21 and
Figure 26) and the relationship between gseporometery and the index was always stronger than
the relationship between Wsem and the equivalent index. This assessment confirmed that the
CWSI was the best option for the assessment of vine water stress under the test conditions.
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Figure 16

Thermal image as collected by the FLIR One (top). A screen shot of image as displayed by
the application showing the canopy demarcated using the thermal colours, the reference
surfaces as green and the warmest and coolest points on the reference surfaces as the blue and
red triangles respectively (centre). The RGB image of the canopy as collected by the VGA
camera on the FLIR One (bottom).
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Figure 17

The relationship between the temperature of a manually selected section of the grapevine
canopy (Tcanopy(manuar)) and the temperature of the entire canopy selected automatically by the
application (Tcanopy(automatic)). Dashed line is 1:1.
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Figure 18

The relationship between the temperature of the leaf with the abaxial side coated with
petroleum jelly (Tarypet) and the temperature of a detached leaf (Tarygear)) that was suspended
in the canopy. Dashed line is 1:1.
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The relationship between the temperature of the leaf with the abaxial side coated with

petroleum jelly (Taryet) and the temperature of a fabric reference (Tary(fan)) that was
suspended in the canopy. Dashed line is 1:1.
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The relationship between the temperature of the leaf where the adaxial surface had been
sprayed with water (Twet(ean) and the wet fabric reference surface (Twet(ran)). Dashed line is

1:1.
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Figure 21

The relationship between gs of Chardonnay and Cabernet Sauvignon subject to a range of
water deficit treatments (see text for details) and CWSI calculated from the average canopy
temperature and the wet (Twet(fan)) and dry (Tary(ran)) Tabric reference surfaces.
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Figure 22

The relationship between gs of Chardonnay and Cabernet Sauvignon subject to a range of
water deficit treatments (see text for details) and Ig calculated from the average canopy
temperature and the wet (Twetab)) and dry (Taryfan)) fabric reference surfaces.
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Figure 23

The relationship between gs of Chardonnay and Cabernet Sauvignon subject to a range of
water deficit treatments (see text for details) and gs(no rer) Calculated from the average canopy
temperature and environmental parameters (see text for details).
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Figure 24
The relationship between gs of Chardonnay and Cabernet Sauvignon subject to a range of

water deficit treatments (see text for details) and gsry) calculated from the average canopy
temperature, environmental parameters and the dry fabric reference (T dry(fan))-
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Figure 25

The relationship between gs of Chardonnay and Cabernet Sauvignon subject to a range of
water deficit treatments (see text for details) and gs@ryawet) Calculated from the average
canopy temperature, environmental parameters and the wet (Twetfan)) and dry (Tarycan)) fabric
reference.
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Figure 26

The relationship between Wsem averaged from three leaves of Chardonnay and Cabernet
Sauvignon subject to a range of water deficit treatments (see text for details) and CWSI
calculated from the average canopy temperature and the wet (Twet(rab)) and dry (Tary(an)) fabric
reference.
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Figure 27

The relationship between Wsem averaged from three leaves of Chardonnay and Cabernet
Sauvignon subject to a range of water deficit treatments (see text for details) and conductance
index (1g) calculated from the average canopy temperature and the wet (Twetab)) and dry
(Tary(fany) Tabric reference surface.
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Figure 28

The relationship between Wsem averaged from three leaves of Chardonnay and Cabernet
Sauvignon subject to a range of water deficit treatments (see text for details) and gso ref)
calculated from the average canopy temperature and environmental parameters.
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Figure 29

The relationship between Wsem averaged from three leaves of Chardonnay and Cabernet
Sauvignon subject to a range of water deficit treatments (see text for details) and gs(ry)
calculated from the average canopy temperature, environmental parameters and the dry fabric
reference (Tary(fab))-
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Figure 30

The relationship between Wsem averaged from three leaves of Chardonnay and Cabernet
Sauvignon subject to a range of water deficit treatments (see text for details) and gs(dryswet)
calculated from the average canopy temperature, environmental parameters and the wet
(Twet(ran)) and dry (Tary(rab)) fabric reference.
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User acceptance testing

Most users found the application simple to use and the instructions (Appendix 5) easy to
follow. They generally felt that the results (CWSI) reflected the appearance of the vines or
their other measurements of water status (primarily soil moisture content) (Table 1).
Comments suggested that the unusually wet season in some locations meant that vines did not
experience the usual level of water stress, which limited some of the opportunities to test the
application (Appendix 5). There was less certainty about the utility of the CWSI for
scheduling irrigation, but none of the testers disagreed with this question (Table 1).

Comments from the interviews suggested that once the users became more familiar with the
application and the CWSI as a method for assessing vine water status, the confidence in this
technique would improve (Appendix 5). The primary areas of concern for the testers were the
need to collect images from the shaded side of the row and the requirements to erect the
Tary(rab) and Twetcfan) in the canopy for each reading (Appendix 5). Several users suggested
improvements to the mounting or display of the Taryan) and Twet(fan) Which are easy to
implement. Others requested that a system be developed that does not require the reference
surfaces. These methods were investigated further as part of this project (see above). Over
80% of the testers would consider using the application in the future and recommend it to

others to use (Table 1).

Table 1

Responses of beta testers to statements regarding the performance of the application and

questions on intentions for future use.

gtiggg?g Disagree | Neutral | Agree Sggrgjtely
The App was simple to use 0% 0% 0 % 75 % 25 %
The methodology for using the 6 % 0% 13 % 56 % 25 %
app is clearly defined in the
instructions
| was comfortable installing the 13 % 6 % 25 % 50 % 6 %
reference leaves for each set of
measurements
The CWSI results were what you 6 % 0% 19 % 63 % 13 %
expected
| considered the weather 0% 6 % 19 % 38 % 38 %
conditions when making
measurements and interpreting
results
The CWSI figures were useful in 0% 0% 38 % 50 % 13 %
making irrigation decisions
Would you consider using the app 13 % n/a 6% n/a 81 %
in the future?
Would you recommend the app to 0% n/a 125 0 n/a 88 %
others?
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Outcomes and conclusions

This project has successfully evaluated a range of smartphone based methods to assess vine
water stress quickly and easily in the vineyard. The most promising method was selected, and
this was developed into a prototype smartphone application. The app was tested to
demonstrate its accuracy and confirm that the most appropriate indices were being used. It
was also beta tested by viticulturists to assess its utility with further improvements being
made based on this testing. These were the broad objectives established in the project
proposal.

An easy, portable and cost-effective system for the direct and real-time assessment of plant
water status remains a challenge for all agricultural industries. The system developed as part
of this project offers the potential to meet these requirements. Traditionally the Australian
industry has relied on soil moisture monitoring as it can give a direct measure of soil content
and its relatively slow changes in response to rainfall, irrigation and water use by the vines.
Plant based methods of assessing water status in contrast are often far more dynamic in
response to the environment. They integrate the amount of moisture available in the soil with
the environmental conditions to indicate how stressed the vine is ‘feeling’. Sudden changes in
the environment such as an increase in wind or cloud cover can rapidly impact on these
results. The CWSI is a direct measurement of the vine’s water status. This is a benefit as you
can assess how the vine is ‘feeling’, based on the weather conditions as well as how much
moisture is in the soil. It can also be a drawback as transient changes in conditions, such as
scattered cloud, can influence the results; potentially increasing the variation between
measurements.

There is a range of scenarios in which CWSI could be used to inform irrigation scheduling
that could complement or replace existing soil moisture monitoring systems. Regular
assessment of the CWSI in a vineyard will help develop an understanding of what values to
expect from different blocks or varieties. If the target is to maximise vineyard yield then
water stress needs to be avoided, while not applying excessive water. Checking the CWSI
immediately prior to applying irrigation would confirm that no stress had occurred.
Preliminary estimates suggest that a CWSI of less than 0.7 recorded from a shaded canopy on
a hot day, or 0.5 on a cooler day would indicate vines are well irrigated. If the target is to
optimise quality and minimise water use as part of a regulated deficit irrigation strategy, then
the CWSI could also be used to inform irrigation decisions. If the vines are being maintained
at a moderate water deficit (for example during the post flowering period) then irrigation
could be withheld if the CWSI is below approximately 0.8 assuming very hot weather is not
forecast. Tracking the CWSI over time may give a viticulturist more confidence to extend the
period between irrigation applications. Soil moisture monitoring systems are normally point
based at a limited number of sites across a vineyard; it is uncommon for all the blocks within
a vineyard to be covered. The thermal camera is very portable and can be used to compare
different parts of a block and across blocks. This system provides an easy opportunity to
check sections of a block that may not be receiving enough water, and benchmark these
against the section adjacent to the soil moisture probe.

If the app is developed further and maintained so that it can be used by the wine industry,
then the savings in water applications are likely to occur as growers will be able to more
easily assess if their blocks require irrigation. Fruit quality will also potentially be improved,
through the better management of regulated water deficit, and by applying strategic
irrigations to maintain canopy health and avoid defoliation.
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Recommendations

The application should be developed from a prototype to a commercial system with initial
support for three growing seasons so the uptake by industry can be assessed. Currently only
broad recommendations on the optimum CWSI values for specific target outcomes are
available. These targets are likely to vary between cultivars, wine styles and regions; and
most growers will want to select and refine the target CWSI values to meet their needs. If the
lack of specific recommendations on CWSI becomes an impediment to uptake, then regional
associations could be supported to develop their own benchmarking programs.
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Appendix 1: Communication

Articles

Jayakody, H., Liu, S., Whitty, M., and Petrie, P. (2017) Microscope image based fully
automated stomata detection and pore measurement method for grapevines. Plant Methods
13, 94.

Liu S, Tang J, Petrie P, and Whitty M. A Fast Method to Measure Stomatal Aperture by
MSER on Smart Mobile Phone (2016), Applied Industrial Optics: Spectroscopy, Imaging and
Metrology 2016, Heidelberg, Germany, 25 - 28 July 2016.

Skewes, M., Petrie, P., Liu, S., and Whitty, M. (2018) Smart Phone Tools for Measuring Vine
Water Status Acta Horticulturae, In Press

Skewes, M. (2017) Smart phone tool measures vine water status. Irrigation Australia, 33, 13-
14.

Presentations

Petrie, P., Skewes, M., Wang, M., Whitty, M., Lam, S., and Liu, S. (2017) A Thermal
Camera Based Smartphone Application to Measure Vine Water Status, American Society for
Viticulture and Enology 68th Annual Meeting, Bellevue, Washington, USA, 26-29 June
2017.

Skewes M, Liu S, Petrie P, and Whitty MA. Smart Phone Tools for Measuring Vine Water
Status, (2016) International Symposium on Sensing Plant Water Status, Potsdam, Germany,
5-7 October 2016.

Skewes, M., Wang, M., Whitty, M., Lam, S., Petrie, P. and Liu, S. Smart Phone Assessment
of Water Stress, (2017) Intelligent Systems — Profitable Winegrowing, Australian Society of
Viticulture and Oenology Mildura Seminar, Mildura, Victoria, Australia, 2-3 August 2017.
Skewes, M., Wang M., Whitty, M., Lam, S., Petrie, P., and Liu, S. (2017) Smart Phone
Assessment of Water Stress, AWRI Webinar, 2 November 2017.

Posters
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New app to measure water stress of grapevines

A new smartphone app that helps grape growers measure the water status of their
vines is being trialled across Australia.

The portable viticultural tool has the potential to help grape growers make improved Wine
water management decisions for their vineyards. Austra |iCI

Grape growers use a thermal camera attached to their smartphone to take images of
the canopy of the grapevine. The image is analysed by the app, which calculates the
vine water status.

The technology is being tested by 15 vineyards in South Australia, Victoria, New South
Wales and Tasmania for the rest of the growing season.

The Wine Australia-funded project is being led by the South Australian Research and
Development Institute (SARDI), a division of Primary Industries and Regions SA
(PIRSA), in close collaboration with The University of New South Wales (UNSW).

Quotes attributable to Dr Kathy Ophel-Keller, Acting Executive Director of the
South Australian Research and Development Institute

Water and associated pumping costs can be a significant component of the production
costs for grape growers.

Uncontrolled water stress has the potential to reduce the yield and quality of grapes
and the resulting wine, which in turn reduces the return to growers.

The management of vine water status is a key tool for grape growers to regulate yield
and optimise fruit quality and style.

This new app offers grape growers instant feedback on the water status of their vines,
and provides them with the flexibility to assess multiple blocks or sections of blocks,
and to make irrigation decisions in real time.

Quotes attributable to Dr Liz Waters, General Manager of Research, Development
and Extension at Wine Australia

Irrigating effectively and efficiently helps to optimise vineyard production to produce
high-quality winegrapes for fine Australian wines.
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Through many years of extensive research, methods have been developed to assess
grapevine water status. This new app provides a portable solution to measure water
status quickly and easily in the vineyard.

The app allows growers to make informed irrigation decisions that support the
production of high-quality fruit grown to specification.

Background

The 18 month project aimed to evaluate a range of smart phone-hased sensing
systems to develop a cheap, easy-to-use vine water status monitoring app, to assist
growers to manage irrigation.

Initial trial results found the thermal camera was the easiest to use and provided
accurate information.

The app was developed by UNSW and the tool is now being tested by a variety of
wineries, with their feedback helping to inform the further development of the innovative
technology.

The aim is to release the final version of the app later in 2017.
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Abstract

Background: Stomatal behavior in grapevines has been identified as a good indicator of the water stress level

and overall health of the plant. Microscope images are often used to analyze stomatal behavior in plants. However,
most of the current approaches involve manual measurement of stomatal features. The main aim of this research is

to develop a fully automated stomata detection and pore measurement method for grapevines, taking microscope
images as the input. The proposed approach, which employs machine learning and image processing techniques,
can outperform available manual and semi-automatic methods used to identify and estimate stomatal morphological
features.

Results: First, a cascade object detection learning algorithm is developed to correctly identify multiple stomata in a
large microscopic image. Once the regions of interest which contain stomata are identified and extracted, a com-
bination of image processing techniques are applied to estimate the pore dimensions of the stomata. The stomata
detection approach was compared with an existing fully automated template matching technigue and a semi-auto-
matic maximum stable extremal regions approach, with the proposed method clearly surpassing the performance

of the existing techniques with a precision of 91.68% and an F1-score of 0.85. Next, the morphological features of the
detected stomata were measured. Contrary to existing approaches, the proposed image segmentation and skeletoni-
zation method allows us to estimate the pore dimensions even in cases where the stomatal pore boundary is only
partially visible in the microscope image. A test conducted using 1267 images of stomata showed that the segmen-
tation and skeletonization approach was able to correctly identify the stoma opening 86.27% of the time. Further
comparisans made with manually traced stoma openings indicated that the proposed method is able to estimate
stomata morphological features with accuracies of 89.03% for area, 94.06% for major axis length, 93.31% for minor axis
length and 99.43% for eccentricity.

Conclusions: The proposed fully automated solution for stomata detection and measurement is able to produce
results far superior to existing automatic and semi-automatic methods. This method not only praduces a low num-
ber of false positives in the stomata detection stage, it can also accurately estimate the pore dimensions of partially
incomplete stomata images. In addition, it can process thousands of stomata in minutes, eliminating the need for
researchers to manually measure stomata, thereby accelerating the process of analysing plant health.

Keywords: Stomatal morphology, Automatic stomata detection, Cascade object detection, Image processing,
Skeletonization, Machine learning, Stomata, Grapevines
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Background

Microscopic study of leaf epidermises aid researchers
to gain a better understanding on the overall behavior
and health of plants [1]. A microscope image of a leaf
epidermis can provide a clear view of guard cells, epi-
dermal cells, stomata and plant leaf veins. Among these
elements, stomata, surrounded by guard cells, play a
major role in protecting the plant against water loss and
regulating the gas exchange with the external environ-
ment [2, 3]. As a result, the behavior of stomata provides
key information on the water stress level, food produc-
tion rate and the overall health of the plant [1, 4-6]. In
an agricultural scenario, analysing stomatal behavior can
lead to better resource management and yields [7, 8].

However, examining stomatal behavior from a micro-
scope image is not a straightforward task. Difterent plants
have difterent leaf structures, and biologists with expert
knowledge are required to correctly identify and meas-
ure stomatal morphology. Currently, the most common
approach to achieve this goal involves manual measure-
ment of stomata pore dimensions using softwares such as
Image]® [9]. These type of tools require the user to man-
ually mark the points of interest such as pore boundaries,
stoma length and width so that the tool can produce the
relevant measurement results. Image]® also provides
additional plugins in order to make tasks such as stomata
identification easier, but users still need to manually tune
parameters for each image to achieve reasonable results
[10-12]. Even with the aid of such tools, the process of
manually measuring stomata morphology is both time
consuming and cumbersome. Due to the time constraints
imposed by manual measurements, biologists are forced
to select only a few stomata for measurement from each
captured microscope image, and build statistical relation-
ships and models using fewer data-points [13]. However,
more robust statistical models can be built if all available
data are measured. The solution therefore, would be to
develop a fast, fully automated method which can accu-
rately measure stomatal morphological features without
any human intervention.

Several studies can be found on automatic detection
and measurement of stomatal morphology. One of the
first studies to investigate the possibility of automati-
cally measuring stomata pore features was conducted
by Omasa and Onoe [14]. In this research, a Hanning
filter alongside a series of morphological operations is
utilized in measuring the pore opening of sunflower sto-
mata. However, this approach does not focus on correctly
identifying stomata from a large microscope image in the
presence of other background elements such as veins and
dust particles. Instead, this method requires the input
to be an image containing a single stoma. The work pre-
sented by Karabourniotis et al. [15] applies UV radiation

41

Page 2 of 12

to leaves, which as a result causes guard cells to emit a
blue florescence. The plant leaves are then captured
using a fluorescent microscope and the resulting images
are filtered and segmented to extract stomata and guard
cells. Even though this method produces reliable results,
it requires a relatively featureless background as well as
methods of applying UV radiation to the leaf. In addition,
the work presented by Sanyal et al. uses image process-
ing techniques on microscope images to classify different
tomato types based on stomata structure [16]. A water-
shed technique is employed to extract a single stoma
from a nearly featureless background. However, the pro-
posed method would not perform well in the presence of
multiple stomata and a feature-rich background.

More sophisticated approaches which aim to extract
and measure stomata from feature-rich backgrounds
can be found in the researches conducted by Laga et al.
[13] and Liu et al. [17]. The work presented by Laga et al.
[13] follows a template matching approach to identify
and measure the stomata pore opening of wheat plants.
Wheat has a very consistent leaf epidermal structure with
wheat stomata roughly aligned in the same direction,
which makes it suitable candidate for template match-
ing. However, for irregular leaf structures this method
requires more templates, and has the tendency to pro-
duce false positive results especially when there are vein
structures which look similar to stomata. Furthermore,
the stoma pore detection approach used in this research
assumes that both the stoma and the guard cell bounda-
ries are clearly captured by the microscopic image. How-
ever, in a practical scenario, the images captured are not
perfect, and contain plenty of partially captured stomata.
More recent research conducted by Liu et al. [17] focuses
on detecting and measuring grapevine stomata by utiliz-
ing maximum stable external regions (MSER). Although
less time consuming than using the Image]® tool, this
semi-automatic method still requires the users to interac-
tively choose correct results from a given image and man-
ually tune a set of parameters for each image. In addition,
this approach always identifies stomata pore openings as
symmetric ellipses, which is not the case in reality.

In this paper, we aim to develop a fully automated
method to identify and measure stomata pore dimen-
sions of grapevines, using microscope images. The
images are prepared by applying a layer of resin and nail
polish onto the leaf surface, and then carefully remov-
ing the nail polish layer which carries an imprint of the
leaf epidermis. The final microscope image is generated
by placing the nail polish impression on a microscope
slide. The microscope images used for this research
contain feature-rich backgrounds and the quality of the
images captured vary depending on external conditions.
Unlike previous work, where classical image processing
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techniques are used, the authors of this paper have
opted to adopt a machine learning based cascade object
detector to identify the stomata in a microscopic image.
A similar cascade classifier has been previously applied
to estimate the density of stomata in oak leaves [18].
However, compared to the work in [18] which uses
Haar-like features for classification, the work presented
in this paper utilizes HOG features to build the cas-
cade object detector. Using a HOG descriptor, which is
known to perform well in capturing the overall shape
of an object, allowed the authors to build an accurate
classifier using a less number of training samples (550
positive samples and 210 negative samples) compared
to the work in [18] (10,000 positive samples and 3000
negative samples). It will be later shown that the train-
ing time required for a HOG based classifier is drasti-
cally lower compared to the Haar based COD proposed
in [18] which took several days to train. A lower training
time allows researchers to easily modify the proposed
approach to train for different plant types with limited
computing resources.

Once the stomata are automatically identified using
the proposed COD algorithm, these regions of interest
are cropped out and segmentation and skeletonization
techniques are applied to the cropped image in order to
measure the stoma pore boundary. Contrary to existing
methods which require sharp, clean microscopic images
for processing, the proposed approach, with the help of
skeletonization, can estimate the stoma pore boundary
under imperfect conditions where the stoma and guard
cell boundaries are not fully visible, due to errors in
applying resin, peeling oft the nail polish layer etc. Here,
skeletonization refers to the process of reducing a region
to a skeletal remnant whilst preserving the connectivity
features of the original image [19, 20]. The final result
is a fully automated start-to-end stomata detection and
measurement solution, where the input is a microscopic
image of varying quality, and the output a set of stomatal
morphologies.

The performance of this two stage method is then com-
pared with the MSER method proposed by Liu et al. [17]
and template matching method proposed by Laga et al.
[13] using 50 microscopic images of cabernet sauvignon.
Results show that the proposed approach is able to iden-
tify stomata more reliably, and produces accurate results
in measuring the stomata pores.

The paper is organized as follows. In the “Methods”
section, the image processing and machine learning tech-
niques used to identify and measure stomatal properties
are discussed in detail with examples. The experimental
results of the study and comparisons with existing meth-
ods are presented in the “Results” section. The last sec-
tion concludes the paper.

42

Page 3 of 12

Methods

The main aim of this work is to develop a fully automated
solution for stomata measurement, where a microscopic
image is used as the input to the system and the corre-
sponding morphological features of the stomata in the
image are treated as the final output. The proposed meth-
odology consists of two stages. The first stage aims at
correctly identifying the stomata in a given microscopic
image. Once, the stomata are automatically identified and
cropped out from the original image, the second stage
analyses and measures the morphological features of each
individual stoma. The steps involved in both of these stages
are discussed in detail from the next section onwards.

Cascade object detection algorithm to identify regions

of interest

Cascade object detection (COD) algorithm is a multi-
stage classification learner, where each stage is made
up of a collection of weak learners. Each of these stages
are trained using a technique called boosting. For the
work presented in this paper, a COD which uses the
Viola—Jones algorithm for face detection is re-trained
for the purpose of identifying stomata [21, 22]. The COD
approach inherently assumes that a large percentage of
the image does not contain an object of interest. This in
fact serves well for the question at hand, where the area
covered by the stomata is small compared to the overall
microscopic image area.

The COD approach is also known for reliably clas-
sifying objects of which the aspect ratio doesn’t change
drastically. Furthermore, this method is better suited for
situations where there are no out of plane rotations of
the object. Thus, COD can be identified as a good can-
didate for the stomata detection since all stomata lie on a
2D plane and have minor aspect ratio changes. Also note
that the COD method employed for this task uses Histo-
gram of Oriented Gradients (HOG) as the main learning
descriptor [23]. The implementation procedure for the
COD algorithm consists of two major steps.

1. Train the cascade object detection classifier using a
set of positive images (images containing stoma) and
a set of negative images (images of veins, dust parti-
cles and other features). The overall simplified opera-
tional procedure for an n stage cascade classifier is
presented in Fig. 1. A detailed representation of the
operations carried out by the initial stage and a gen-
eral stage of the classifier are shown in Figs. 2 and 3
respectively.

2. Slide a window over the microscope image and use
the trained COD classifier to check for a stoma inside
the window. If a stoma is detected inside the sliding
window, define that area as a region of interest (ROI).
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Positive labelled Start Negative images
samples

Stage 1 \4 v v
I Initial stage: generation of initial classifier and negative samples based on classifier parameters. I
Stage 2 ¢
I Update classifier using positive and negative samples from the previous stage. I
T
1
Stage n ¢

Update classifier using positive and negative samples from the previous stage.

Fig. 1 The operational procedure of an n-stage cascade classifier

C Final cascade classifier )

Positive labelled Negative images
samples

Stage 1

Train using a pre-determined number
of positive samples based on
classifier parameters

Generate negative sample set using
the user defined negative images

Fig. 2 Function of the initial stage of a cascade object detector

A 4 A 4

Updated classifier Generated negative samples

Figure 4 shows the COD classifier at work. The bound- it is important to observe the nature of the stoma cap-
ing boxes which contain stoma are cropped and then sent  tured. A closer look at the ROIs indicate that the stomata
to the second stage where binary segmentation methods  observed can be categorized into two types as,
alongside skeletonization techniques are applied to meas-

ure the pore morphology. 1. Stomata with complete pore boundaries (see
Fig. 5a.1).

Stomata pore measurement via binary image 2. Stomata with incomplete (discontinuous) pore

segmentation and skeletonization boundaries (see Fig. 5b.1).

Once the ROIs are identified and cropped, the next

step is to detect and measure the stomatal pore in each In order to develop reliable statistical models and

ROL Before proceeding with the pore measurements, relationships involving leaf epidermises, it is important
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Fig.4 A sample result of the COD based stomata detection method
The green crosshairs represent actual stomata. The yellow bounding

boxes show automatically detected regions of interest (ROls)

to collect as much data as possible from a given micro-
scope image. To the best of our knowledge, all previous
research inherently discard stomata with low quality and
require sharp, clean, complete boundaries in order to
derive pore measurements. In this work, a skeletoniza-
tion based approach is proposed to overcome this issue

and estimate pore boundaries for low quality stomata
with discontinuous pore boundaries.

The stomatal pore measurement stage has two
sub-stages:

. Binary image segmentation: estimates pore meas-
urements for high quality, complete stomata.

. Skeletonization and ellipse fitting: estimates pore
measurements for low quality incomplete stomata.

First, all cropped stomata images are fed through the
binary image segmentation method. The binary image
segmentation method can accurately estimate the sto-
matal pore areas for high quality images. However, this
method fails when processing low quality images with dis-
continuous boundaries. Therefore, whenever this method
fails in identifying the stomatal pore area, the correspond-
ing low quality image is then fed into the skeletoniza-
tion and ellipse fitting method. Adopting such a method
ensures that pore boundaries are identified for the major-
ity of the stomata detected under varying image quality.

Binary image segmentation
The following set of steps are employed to estimate the
stoma morphology for complete pore boundaries.
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'('. ‘
bl b2
Fig.5 Examples of stomata captured with varying quality. a.1 Stoma
with a complete pore boundary. a.2 Binary segmentation result for
a complete pore boundary. b.1 Stoma with an incomplete pore

boundary. b.2 Binary segmentation result for an incomplete pore
boundary

. The image is sharpened, converted to grayscale and
then converted to a binary image.

. Independent regions (disconnected from each other)
are identified on the binary image.

. The region representing the stomatal pore opening is
identified based on two assumptions: (a) the stoma
is closer to the center of the ROI, (b) the pore area
is smaller than a predefined upper limit. The upper
limit of the pore area represents the approximate
maximum area that can be covered by a stomatal
pore. This parameter depends on the resolution and
the zoom level of the microscopic image. The upper
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limit can be defined by briefly observing the original
images and gaining an understanding on how large a
typical stoma is (pixelwise).

. The pore opening is marked and the morphological
features such as area, major axis length, minor axis
length and eccentricity are measured.

A visual representation of this method is shown in Fig. 6.
This simple approach produces reliable results when
the stoma is of good quality. However, if the stoma pore
boundary is discontinuous, the binary image of the stoma
would not contain a independent region which agrees
with the two assumptions made in step 3 (see Fig. 5b.2
for such a condition). Therefore, such images are dis-
carded and handed over to the skeletonization and ellipse
fitting method. A detailed description of the skeletoniza-
tion approach is presented in the next section.

Skeletonization and ellipse fitting

Image skeletonization refers to the process of reducing
a selected region to a skeletal remnant which represents
the medial axis of that region [19]. The following set of
steps are applied to the images discarded by image seg-
mentation sub-stage, with the aim of estimating stoma
morphological features in the presence of discontinuous
pore boundaries.

. The image is sharpened, converted to grayscale and
then converted to a binary image.

. Independent regions (disconnected from each other)
are identified on the binary image.

. The binary image is inverted.

. The independent regions on the image are skel-
etonized (also known as deriving medial axes). Each
skeletal remnant would be a vector containing pixel
coordinates.

. The skeletal remnant associated with the pore bound-
ary is then identified based on two assumptions: (a)
the skeletal remnant associated with the stoma is

W

w

b

Fig. 6 The binary image segmentation process. a Original image. b Binary image. ¢ Identify pore region. d Pore boundary overlaid on the original
image

a

(v
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closer to the center of the ROI. (b) The length of the
skeletal remnant lies between a pre-defined upper
and lower limit.

6. Once the correct skeletal remnant is identified, gen-
erate an ellipse which fits the points of the skeletal
remnant.

7. This ellipse is then used as a mask on the binary
image derived in step 2. The independent region
inside this mask is identified as the stoma pore.

A visual representation of this step-by-step approach
is shown in Fig. 7. Skeletonization and ellipse fitting,
together with binary image segmentation ensures that
morphological features are measured for a large percent-
age of the initially detected ROIs. Compared to the tra-
ditional approach of manually measuring stomata which
drastically limits the number of stomata which can be
measured, this novel approach provides a comprehensive
solution which provides pore measurements for a large
number of stomata in quick time.

Results
The performance of the two stage stomata measure-
ment method was compared with Liu’s MSER approach
and Laga's template matching approach. Programs
for all three methods were developed using Matlab®
R2017a.

Training procedure

The training step of COD was conducted using 550 posi-
tive samples where each image contained a single stoma,
and 210 negative samples which contained other leaf
epidermis features such as veins and dust particles. The
classifier consists of 8 stages, and utilizes HOG features
as the main descriptor. The visual representation of the
HOG features on positive samples are shown in Fig. 8.
The training process took approximately 7 min, inside
the Matlab® environment on a 2.2 GHz Intel® Core
i7-4702MQ CPU with 16 GB RAM. Note that COD
training with HOG features takes drastically less process-
ing time compared to the classifier used in [18] which
took several days to train.
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Data collection

The trained classifier was then tested on a separate 50
microscope images collected from cabernet sauvignon
leaves containing 2012 stomata. The images were pre-
pared using the conventional approach, where a layer of
resin and nail polish are applied to the leaf epidermis,
and an imprint of the leaf surface is captured by remov-
ing the nail polish layer and placing it on a microscope
slide. The microscope images were captured using an
Olympus® DP73 camera attached to an Olympus® BX53
microscope. The image resolution was set at 4800 x 3600
pixels, with a magnification of 8.6 pixels/pm.

Stomata detection

The stomata detection capability of the proposed COD
approach was put to test first. In order to measure the
performance improvements of the proposed method, two
other existing methods, namely, Laga’s template match-
ing approach and Liu’s maximum stable extremal region
approach, were applied to the same 50 images. Since Liu’s
MSER approach is not a fully-automated method, we
tuned the MSER parameters such that it provided best
possible results for the given image set, and then auto-
mated the process in order to make the three methods
more comparable. The template matching method was
implemented using 20 stoma templates. Detailed imple-
mentation instructions for both template matching and
MSER methods can be found in [13] and [17].

The corresponding results obtained after applying
these three methods to 50 microscopic images are pre-
sented in Tables 1 and 2. The proposed method not only
generated the highest number of true positives, it also
resulted in the least number of false positives. Thus, the
results clearly reflect the superiority of the the cascade
classifier compared to the other two existing autonomous
approaches. Further statistical analysis of the results
showed that the proposed COD approach had the high-
est precision, recall and accuracy rates among the three
methods (see Table 2). It is also the only method to sur-
pass an F1-score of 0.80. The low number of false positive
results generated by COD can be identified as the main
reason contributing to this superior F1-score.

0 0

a ‘b c

overlaid on the original image

\
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Fig. 7 Skeletonization and ellipse fitting process. a Original image. b Binary image. ¢ Derivation of independent line segments via skeletonization.
d Fit ellipse to the skeletal remnant representing the pore opening. e Binarize the region inside the ellipse and identify regions. f Pore boundary
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Fig. 8 HOG feature visualization for positive samples

Table 1 Numerical results obtained for template matching, MSER and COD methods, using 50 microscopic images con-

taining 2012 stomata

Actual number of stomata ROIs detected True positive False positive False negative
Template matching 2012 2331 1324 1007 688
MSER 2012 1398 746 652 1266
COD (proposed) 2012 1742 1597 145 415
The bers for the proposed method were itali to t the imp of the proposed approach

Table 2 Statistical results obtained for template match-
ing, MSER and COD methods, using 50 microscopic images
containing 2012 stomata

Precision (%) Recall (%) Accuracy (%) F1-score

Template match- 56.64 65.50 4395 0.60
ing

MSER 53.36 37.08 28.00 044

COD (proposed)  91.68 7937 74.04 0.85

The numbers for the proposed method were italisized to emphasize the
improvement of the proposed approach

Stomata measurements

The next step was to test the performance of the second
stage of the proposed approach. In this stage, the main
aim of the algorithm was to estimate the morphological
features of the stomata pores. For this experiment, the
1742 ROIs detected through the COD method were used
as the input. The corresponding results are presented in
Table 3. Out of 1742 identified ROIs, the binary image
segmentation method combined with skeletonization

47

was able to generate results for 1267 stomata while dis-
carding 475 ROIs. Further analysis showed that the 475
ROIs discarded by the pore estimation method included
false positives generated by the COD as well as stomata
of which the pore boundary could not be identified with
any confidence, due to the image being out of focus or
stoma being partially captured. Next, the generated 1267
estimations were visually inspected. These inspections
showed that this approach was able to correctly identify
the pore boundaries 86.27% of the time. The inaccurate
results (174 out of 1267 ROIs) often identified the guard
cell boundary as the stoma opening. However, this small
number of inaccuracies does not pose a threat to the final
result, as the user can easily visually inspect and remove
such results from the dataset. It is important to note that
the time spent on discarding inaccurate results via visual
inspection is negligible compared to the time consumed
in manually marking over a 1000 stoma pore openings.
Let us now consider the correctly marked stomata. It
is important to measure how the automatically generated
stomatal pore measurements compare with manually
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Table 3 Results obtained for stomata pore estimations for 1742 ROls

Number of ROIs Discarded ROIls Accurate pore identifi- Inaccurate pore identi-  Identification
as input cations fications accuracy
Binary image segmentation 1742 475 1093 174 86.27%
with skeletonization and
ellipse fitting

The numbers for the proposed method were italisized to emphasize the improvement of the proposed approach

marked stomatal pores traced using tools similar to
Image]®. In order to make this comparison, the stoma
boundary was manually marked under expert supervision
for 70 randomly generated ROIs. These manually marked
boundaries were considered as the ground truths. Then
the manually measured parameters were compared with
the measurements generated by the proposed automated
method. The following equations were used to estimate
the major axis length, @, and minor axis length, 2,

A

BN W
— E2

p=y/2E @)
w

where, A is the area of the stoma pore and E is the eccen-
tricity of the detected pore. The corresponding results of
the experiment are presented in Table 4. Here, the term
accuracy is defined as,

Accuracy (%) = [(Y — ?)/Y| x 100, (3)

where, Y is the actual value, and Y is the estimated value.
According to the results, the pore area traced by the auto-
mated method is always slightly larger than the manually
marked area but holds an accuracy reading of 89.03%.
However, the eccentricity values are highly accurate as
the errors in major and minor axis length measurements
are quite uniform (i.e: similar estimation errors in 2 and b
would not highly aftect the term b/a). The average accu-
racies for both major axis length and minor axis length
surpass 90%, with accuracy readings of 94.06 and 93.31%
respectively. A side-by-side visual comparison between
the ground truth and the estimation for 12 test images is
presented in Fig. 9.

Table 4 Comparison of automatic stomatal pore measure-
ments with manual measurements derived using ImageJ®

Number Avg. area Avg. Avg.major  Avg.minor
of stomata  accuracy eccentricity axis length  axis length
compared accuracy accuracy accuracy
70 89.03% 99.43% 94.06% 93.31%
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Observing the results, it can be concluded that the fully
automated method is able to provide accurate morpho-
logical measurements for 1093 stomata out of 2012 avail-
able stomata in a small amount of time. Please note that
the two stages together have discarded 890 stomata due
to various reasons such as stoma being too blurry, not
properly captured etc. The time consumed by an Intel
i7 computer with 16 GB RAM to process the 50 images
of high resolution (4800 x 3600 pixels) was measured
to be 10 min (roughly 12 s to process 40 stomata). These
results suggest that the proposed approach can save a
huge amount of time in processing large sets of micro-
scopic data, when compared to manual approaches.

Discussion

As per the results, the proposed two stage fully auto-
mated method is able to out-perform existing stomata
detection method as well as accurately measure stoma
pore dimensions. The reasons which result in such an
improvement are discussed next.

Figure 10 shows the results generated by the three
methods for a sample microscopic image. The template
matching approach works well in highlighting areas con-
taining stomata as shown in Fig. 10a. Note that this is the
first time the template matching approach was applied to
a leaf structure with stomata oriented in all directions. In
this scenario, the template matching method is prone to
highlighting other epidermal elements such as veins and
dust particles which align well with some stomata and
have similar thicknesses. This causes the template match-
ing method to generate a high number of false positives.
On the other hand, the MSER approach proposed by Liu
et al. searches for stable elliptical regions in the image.
Thus, their approach is not robust enough to difterentiate
between stoma pore openings, outer guard cell walls and
veins containing elliptical patterns. This results in a high
number of false positives as well. In addition, this method
tends to discard stomata pores of which the interior is
not stable enough for detection. These issues are clearly
illustrated in Fig. 10b.

The proposed cascade object detection approach
identifies stomata by learning their overall appearance.
Thus, it is able to identify stomata in a more robust man-
ner, whilst keeping the number of false positives to a
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Fig. 9 A sample segment of stomata pore measurement results. A red trace represents a manually marked (ground-truth) stoma pore. A green
trace represents automatically measured pore for the same stoma

minimum. However, this method too would ignore sto-
mata which look considerably different from the train-
ing data set (e.g: blurred stomata, partially captured
stomata). Furthermore, as a learning algorithm, the per-
formance of the proposed cascade classifier is subject to
change depending on the hyper-parameters (number of
stages, number of false positives allowed per stage etc.)
used during learning as well as the nature of the train-
ing dataset used. Special attention should be paid to the
size and the features captured by the training datasets in
order to produce the best possible results. This cascade
classifier approach can successfully perform with a wide
range of leaf types. However, the classifier would require
re-training with suitable training data for leaf types with
considerably difterent stomata or background structure.
Let us now consider the stomata pore measurement
process. The proposed pore measurement methodol-
ogy, which involves binary image segmentation com-
bined with skeletonization and ellipse fitting, does not
require stoma boundaries to be sharp and continuous
like Laga’s template matching approach. It is fully capable
of estimating stoma pore dimensions even in cases where

the pore boundary is only partially visible in the image.
However, in order to estimate the pore dimensions for a
partially complete boundary, the boundary should be at
least 60~70% complete. In other words, the implemented
ellipse detection algorithm struggles to derive a confi-
dent estimate for boundaries which are more than 50%
incomplete. This is one main reason for the stomata pore
measurement stage to discard 475 ROIs from the 1742
detected ROIs (see Table 3).

Conclusions

This paper presented a fully automated start-to-end solu-
tion for estimating stomatal morphological features of
grape leaves. This two stage approach, which comprises
of a cascade object detector to identify stomata in an
image, and a combination of segmentation, skeletoniza-
tion and ellipse fitting techniques to measure the stomata
pore opening, was able to perform better than recently
developed automated stomata detection methods. The
COD approach identified stomata with a precision of
91.68% and an F1-score of 0.85. Out of the identified sto-
mata, this approach managed to correctly trace the pore
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Fig. 10 Stomata identification results for three different methods. a
Result for Laga's template matching method. b Result for Liu's MSER

method. ¢ Result for the proposed COD method
=

boundary of the stoma 86.27% of the time. Comparisons
with ground truths show that the proposed approach
measures the pore area with an accuracy of 89.03% the
eccentricity with an accuracy of 99.43%. Compared
to existing pore measurement methods, the proposed
approach can estimate pore dimensions for stoma with
incomplete pore boundaries. All the tests were con-
ducted using grape leaves of type cabernet sauvignon.

Page 11 of 12

The authors intend to extend this research to test on dif-
ferent varieties of grapes and other plant types.
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Appendix 2: Intellectual Property:

Identify the intellectual property and/or valuable information arising from the research.
The Vine Water Stress App is potentially valuable as an easy, quick and portable method to assess

vine water status using a thermal camera. However, it is an application of techniques (both the Crop
Water Stress Index and the image processing methods) that are available in the public domain.
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Appendix 5: Additional material

Instructions for Smartphone Application

The instructions provided to the beta testers for the use of the vine water stress app, as
provided in January 2017.
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Using Vine Water Stress App to measure Crop Water Stress Index of

grapevines
Mark Skewes, Mickey Wang, Stanley Lam, Paul Petrie, Mark Whitty

SARDI

Wine @

Australia

Government

o soumia "
ia  RESEARCHAND
of South Australia DEYELOPMENT

Feedback
Our purpose in making this app available at this stage is to test it and fix any issues. To assist us in
this process we ask you to provide as much feedback as you can.
In the first case please call or email Mickey Wang, the Technical officer for the project:
e 0472841884
mickey.wang@sa.gov.au

What’s in the Box?

Oppo F1s mobile phone (not including SIM card) with the VWS App pre-installed.
FLIR One Thermal camera including charging cable.

3. Wet and dry reference leaves (red toweling mounted in an embroidery ring, wet
reference is attached to a bottle to hold water for maintaining leaf wetness).

Note that the mobile phone does not contain a SIM card, at the first opportunity please
connect it to a Wi-Fi network so the phone will check for updates to the app.

Dry Reference

‘Wet Reference

OPPO Phone

Figure 1 Contents of the box

Using Vine Water Stress App to measure the Crop Water Stress Index of grapevines Page 1 0f 8
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Preparing to take the image

1. Ensure that both the Oppo phone and FLIR One camera are fully charged (or keep
them on the charger in your vehicle).

2. Fill the wet reference bottle with water and wet the red toweling, ensure the wick is
wet and reaches into the water (you may leave the bottle full all the time if you can
store it upright, and just top up as needed).

3. Always avoid any kind of moisture source touching the dry reference. (E.g. don’t
carry the wet reference and dry reference in one hand. Don’t touch the dry
reference with wet hand.) If the dry reference is wet, don’t use it until it has totally
dried.

4. Select the vine that you are going to measure, hang the wet and dry reference leaves
on the shaded side of the canopy and ensure that they are fully shaded (see Figure 2
for a suggestion of how to mount the reference leaves in the canopy, please feel free

to create your own system to suit your canopy architecture).

Figure 2 Suggestion for mounting the reference leaves in the canopy

5. Leave the bottle and reference leaves in the field environment for a few minutes
before taking the image so they can equilibrate with the vineyard temperature.

Using Vine Water Stress App to measure the Crop Water Stress Index of grapevines Page 2 of 8
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Taking the image

1. Activate the cell phone, plug in the FLIR One thermal camera and turn the FLIR One
on using the button on the side. The VWS app will automatic run when it detects the
FLIR One.

2. If the phone doesn’t recognize the camera, turn the phone off and back on again,
and try again.

3. The image will appear in RGB (normal colour) on the phone screen to aid with
framing the photo.

Figure 3 Yellow box indicates the recommended framing of the image for best results

4. Take the image from a distance of between 1 and 1.5 meters from the shaded side of
the canopy, making sure both the wet and dry reference leaves are fully shaded and
are included in the image (see Figure 3 for recommended framing of the image).

5. Press the ‘button’ on the app to take the image. A thermal image will now be shown
on the phone.

6. The app will automatically select the wet and dry leaves (based on their colour and
temperature) and highlight these with arrows. All other parts of the photo that
aren’t the grapevine canopy should be excluded from the analysis (denoted as RGB
(normal colour) (Figure 4).

7. Inthe unlikely event that the wet or dry reference leaves haven’t been selected
correctly, move the blue (wet) or red (dry) arrow to the wet or dry reference leaf
respectively.

Using Vine Water Stress App to measure the Crop Water Stress Index of grapevines Page 3 of 8
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<= Temperature
Adjustment

Save and
Get Result

<: Discard

‘Wet Reference

Dry Reference

Figure 4 Initial thermal image screen

8. If a portion of the canopy is missing (can be seen as a RGB as opposed to a thermal
view) from the image, or non-canopy components (e.g. a post or the ground) are
included, select the tool symbol and adjust the two sliders at the bottom of the

Sky filtered out

Bunch filtered out Minimum Temperature Maximum Temperature
Slider Slider

Figure 5 Temperature range adjustment tool

9. Press the ‘save’ icon, and a dialogue box will open which summarises the CWSI data
for the image, and asks you to enter a block name. Press the blank space to call up
the keypad, and enter an appropriate name. Press ‘Done’ and then ‘OK’ to save the

image and data (Figure 6).

Using Vine Water Stress App to measure the Crop Water Stress Index of grapevines Page 4 of 8
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Save and Continue?

Dry Reference
Average

Wet Reference
CWSI

Block

Figure 6 “Save” dialog box
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10. It is recommended that you collect multiple images at each site to ensure that
results are consistent, rapid changes in environment (especially cloud cover or wind)

will influence the results.

11. When you return within range of a Wi-Fi network any images you have taken will
also be uploaded to a database as soon as the phone is turned on and Wi-Fi
connected. This will allow us to check the operation of the app and help
troubleshooting any problems you may have. The FLIR One does not need to be
connected or the app to be open for this to occur.

Using Vine Water Stress App to measure the Crop Water Stress Index of grapevines Page 5 of 8
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Interpreting Results

e Crop Water Stress Index (CWSI) result is a number between 0 and 1. Well irrigated
vine should have a lower CWSI, while a water stressed vine will have a higher CWSI
result.

o CWSlis usually lower in the morning, and increases gradually as the day becomes
warmer. It will reach the highest level at approximately 3pm (or the hottest part of
the day).

® The environment will also impact on CWSI. Just as you feel hotter when you stand in
the sun, the CWSI would be higher on a sunny day compared to an overcast day.

e Appropriate benchmarks are still being developed for CWSI of a shaded canopy. For
example, we need to confirm the impact of variety, canopy size and training system,
phenoclogy, and the time of day when the image is taken on CWSI.

¢ Guidelines to CWSI (recorded on a shaded canopy):

1. Above 0.7 on a sunny warm day represents some water stress.

2. Above 0.9 on a sunny warm day represents severe water stress.

3. Between 0.5 and 0.7 is in the normal range.

4, Readings below 0.5 are uncommon and would be expected to occur on a
cool day with well irrigated vines.

e Until these benchmarks are better established the CWSI needs to be considered in
an integrated manner with other methods of assessing vine water status, e.g. soil
moisture and the condition of the canopy.

o |f CWSI doesn’t match the soil moisture results, e.g. CWSI shows a high result
(stressed) but soil moisture sensor reports the soil as being wet, there could be an
issue related to salinity or root damage.

Crop Water Stress Index — Background and Overview

Traditional measurement of vine water status.

There are a wide range of methods that have been used to assess vineyard water status
and to make better irrigation scheduling decisions. Traditionally the Australian industry
has relied on soil moisture monitoring as it can give a direct measure of soil content and
its relatively slow changes in response to rainfall, irrigation and water use by the vines.
Soil moisture sensors have been developed to be robust and are readily automated.
Plant based methods of assessing water status in contrast are often far more dynamic in
response to the environment. They integrate the amount of moisture available in the
soil with the environmental conditions to indicate how stressed the vine is ‘feeling’.
Sudden changes in the environment such as an increase in wind or cloud cover can
rapidly impact on these results.

What is the Crop Water Stress Index?

Plants’ canopies are cooled due to the evaporation of water (transpiration) from leaves
(like an evaporative air conditioner). When there is plenty of water available plants open
their stomata (the pores on the leaves which regulate photosynthesis and transpiration),

Using Vine Water Stress App to measure the Crop Water Stress Index of grapevines Page 6 of 8

62



and the resultant evaporation of water from the leaf creates a cooling effect. Under
drought conditions the stomata close to help conserve water and the temperature of
the canopy increases as the rate of evaporative cooling drops. How open the stomata
are (called the stomatal conductance) can be measured directly using a device called a
porometer, or indirectly from the reduction in canopy temperature due to the
evaporation. These measurements are an indication of the plant water status.

The Crop Water Stress Index (CWSI) provides an estimate of how cool the canopy is
relative to the canopy of a crop that is well irrigated. A well irrigated crop that is
transpiring as fast as possible is given a value of zero (in reality we rarely record values
below 0.5), while a crop that is experiencing significant water stress would have a value
of one. As it isn’t practical to maintain well-watered and water stressed plants as
references, wet and dry reference leaves are used as substitutes. The wet reference leaf
represents the canopy of a fully irrigated plant, and the dry reference leaf represents the
canopy of a badly water stressed plant.

The formula for the CWSI:

CWSI = (Canopy temperature — Wet reference temperature) / (Dry reference
temperature - Wet reference temperature)

A thermal camera is a good tool to measure plant water status using the CWSI as it can
easily assess the temperature of sections of the canopy as well as wet and dry
references.

How does CWSI relate to my vineyard?

The CWSI is a direct measurement of the vine’s water status. This is a benefit as you can
assess how the vine is ‘feeling’, based on the weather conditions as well as how much
moisture is in the soil. It can also be a drawback as transient changes in conditions, such
as scattered cloud, can influence the results; potentially increasing the variation
between measurements. These factors must be kept in mind when collecting and
interpreting CWSI measurements.

The vine’s water stress normally increases during the day. This is due to increasing
temperature, normally until approximately 3pm, and the consumption of any water that
was drawn from the profile and stored in the vine overnight. With other plant based
measurements of water status (such as water potential), a consistent time of day
(normally around mid-day) is selected to standardize the measurements. Targeting
around mid-day (between 11am and 3pm) is also likely to give the most consistent
results with CWSI.

Our testing of CWSI has focused on placing the reference leaves in the shade and
assessing the shaded side of the canopy. In part this is to minimize variation in CWSI due
to short term variation in cloud cover; however, all other things being equal you would
expect to record a lower CWSI on a cloudy day then a sunny day.

How could | use CWSI in my vineyard?
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There are a range of scenarios where CWSI could be used help inform irrigation
scheduling that could complement or replace existing soil moisture monitoring systems.

Benchmark CWSI values are still being developed for grapevines based on shaded
canopies. In our trials CWSI values below 0.5 have been rarely recorded and would
represent very well-watered vines and cooler conditions on the day of measurement.
Readings between 0.5 and 0.7 represent mid-range values. These can still occur on well-
watered vines under hot conditions. For CWSI values above 0.7, some water stress is
occurring and at above 0.9 this stress is severe. Regular assessment of the CWSI for your
vineyard will help you develop an understanding of what values to expect from different
blocks or varieties. Try and take measurements regularly to coincide with when you
make your irrigation decisions.

If your target is to maximize vineyard yield then you would normally look to avoid any
vine water stress, while not applying excessive water. Checking the CWSI immediately
prior to applying irrigation would confirm that no stress has occurred. Preliminary
estimates suggest that a CWSI of less than 0.7 recorded from a shaded canopy on a hot
day, or 0.5 on a cooler day would suggest that your vines are being well irrigated.

If your target is to optimize quality and minimize water use as part of a regulated deficit
irrigation strategy, then the CWSI could also be used to inform your irrigation decisions.
If the vines are being maintained at a moderate water deficit (for example during the
post flowering period) then irrigation could be withheld if the CWSI is below
approximately 0.8 assuming very hot weather isn’t forecast. Tracking the CWSI over time
may give a viticulturist more confidence to extend the period between irrigation
applications.

Soil moisture monitoring systems are normally point based at a limited number of sites
across a vineyard, and it is uncommon for all the blocks within a vineyard to be covered.
The thermal camera is very portable and can be used to compare different parts of a
block and across blocks. If you are concerned that one section of a block may not be
getting enough water then this provides an easy opportunity to check, or compare it to
the section adjacent to the soil moisture probe.
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Results of Beta Testers Survey

Results of the survey of the beta testers of the application completed from the end of vintage

2017.
Q1. The App was simple to use
Strongly . Strongly
Disagree Disagree Neutral Agree Agree
No. of people 12 4
selected
Percentage of 0% 0% 0% 75 % 25 9%
people selected

Comment summary:

It's a good concept to link the management method to a smartphone. It's great.

The only negatives were: 1 the image editing tool. 2 the cumbersome nature of the
reference paddles.

Some difficulty in reading with the grass in the background.

Can only take readings in the early morning or late evening because of row
orientation.

The App was user friendly and found the majority of the time worked well. Feedback
from other users at our site found the app was also easy to operate on the phone.
Easy to follow step by step.

The app was simple to use once played or used it, not clear at first.

Q2. The methodology for using the app is clearly defined in the instructions

Strongly . Strongly
Disagree | D'sadree Neutral Aoree Agree
No. of people 1 2 9 4
selected
Percentage of 6.25 % 0% 12.5 % 56.25 % 25%
people selected

Comment summary:

Confused by choosing the shady part of canopy for measurement.

More direction on where to place the reference leaves would be good.

The editing tool (temperature adjustment bar) and how this works / alters your results
was not clearly spelt out.

Very clear

As far as | know the current version did not have a section with instructions. The
printed instructions were easy to follow.

Yes instructions detailed and pictures helped

Yes. Clear instructions.

The instructions were easy to read and understand.

Well explained and easy to follow

Instructions were OK but always found a question of ‘how to do that’
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Q3. I was comfortable installing the reference leaves for each set of measurements

Strongly ] Strongly
Disagree | D'sadree Neutral Aoree Agree

No. of people 2 1 4 8 1

selected

Percentage of 12.5 % 6.25 % 25 04, 50 % 6.25 %

people selected

Comment summary:

e Time consuming

e It’s atwo person job

e Feels awkward to carry and install

e Cumbersome if doing multiple sites.

e Dry references is very sensitive — the slightest amount of moisture can affect

e First time is a bit hard, once you work out the best way to place them this was not a
concern.

e Some difficulty in getting the references to sit upright and stay in the canopy

e They should be smaller and attached to each other

e Suggest creating a framework to hold both references, would make it easier and
prevent the paddles twisting

e It needed a bit of practice with sprawling canopy or traditional bush vine. Super easy
on VSP and Scott Henry trellis.

e | was comfortable with installing the references but sometimes the canopy got in the
way of the references

e Hard to attach to the large canopy with drooping shoots

e It was asimple step

e | was comfortable once a few bugs had been fixed with an upgrade

Q4. The CWSI results were what you expected

Strongly : Strongly
Disagree Disagree Neutral Agree Agree
No. of people 1 3 10 2
selected
Percentage of 6.25 % 0% 18.75 % 62.5 % 12.5 %
people selected

Comment summary:
e This season was not helpful for the water stress testing. Most vines didn’t experience
water stress. However in general results are good.
e Asageneral rule yes.
e Generally yes. Sometimes surprised to see stress when vines seemed OK.

e Noticed there was a significant difference between taking photos in early morning and
later afternoon.

e The results matched the known dry patch and wet patch.
e In case of weak vines tended to pick up a region on a healthy vine in next row.
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Had no confidence in the result. The plant looks healthy, but the app shows it had
water stress. Maybe because the vine had small canopy. (Only used the app once in
early stage)

Yes. 90% of the time the results were as predicted.

The CWSI figures were as | thought when looking at the vines during different times
of the day and knowing the soil moisture levels.

It matched what we saw visually and on our soil moisture monitoring.

We are a cool site and so it was what we expected

Q5. I considered the weather conditions when making measurements and interpreting

results.
Strongly : Strongly
Disagree Disagree Neutral Agree Agree
No. of people 1 3 5 5
selected
Percentage of 0% 625% | 1875% | 375% 37.5 %
people selected

Comment summary:

Restricted by time

Used on hot days >32°C

Considered the sun direction and sun movement

Tried in all weather conditions

| tried to sample in the morning, mid-afternoon then late afternoon. Windy conditions
were found to be hard to capture good images. Tried the app in hot conditions (39
degrees) and found the vines to be shut down, and this was to be expected.

| paid attention to cloud cover, rainfall and vine stress level.

Q6. The CWSI figures were useful in making irrigation decisions

Strongly . Strongly
Disagree | Disagree | Neutral Aoree Agree
No. of people 6 8 2
selected
Percentage of 0% 0% 37.5 % 50 % 12.5 %
people selected

Comment summary:

It is a useful tool. However due to the very wet season, did not even turn the water on.
If we irrigated | would have used this tool as a reference.

Season didn’t help for app testing

I think over time as | use the tool more often, then this will be the case. At this stage
it is similar to soil moisture monitoring which I use as part of the decision.

Did not use so much for irrigation rather to monitor stress of vines with root disease
If had chance to use more times, | would have a better understanding of the CWSI,
and it could be useful in making irrigation decisions.
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Yes. | cross referenced with soil moisture results and they were as expected.

Quick & easy tool.

The CWSI figures were more of a confirmation on the duration of irrigation applied
and the timing of the applications were correct as you could determine the amount of
stress you are applying.

Our irrigation system runs 24hrs/day on continuous rotation. This region (Riverland)
is hot and low rainfall, very limited options to change irrigation strategy.

Q7. Would you consider using the app in the future?

Yes No Not Sure
No. of people 13 2 1
selected

Percentage of 81.25 % 12.5 % 6.25 %
people selected

Comment summary:

Enjoyed using the app.

Yes, but the app needs more development.

The beauty of the app is you can measure the vines everywhere.

Definitely

Cheap, quick + easy. Good back up to soil moisture readings

Yes, definitely I would consider using the app in the future as long as the process in
collecting wet and dry temperatures within the vines were easier.

Yes | can see a use for it to help in scheduling irrigation

Not relevant as our system can’t vary. Our block is big and the water is always on.
The app itself was good to use but it was the paddles that made it a bother to use as it
took up time.

Q8. Would you recommend the app to others?

Yes No Not Sure
No. of people 14 2
selected
Percentage of 875 % 0% 12.5 %
people selected

Comment summary:

Will be interested to see how the development goes.

Yes. Already have and will continue to

The app is a great tool to determine and to confirm the user’s observations and
thoughts when determining whether to apply or hold off on irrigation.

| think the app would be great for growers with smaller areas to manage, and systems
that have flexibility.

It can help young and inexperienced growers.

Simple, easy to use, instantaneous results
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That’s a yes/no as if the procedure changed involving the paddles.

Q9. Do you have any suggestions for improving the app?

Once it’s calibrated for the site/manager, if the result number could come up in a
colour code (colored bar) to indicate the stress level, it could be helpful.

If it works on iPhone, it will be great

Need to consider the orientation of the row to determine taking images in the morning
or in the afternoon.

Need to modify the wet and dry references to make them easier and quicker to install
on the vine.

Automated system to enable seeing progression through the day rather than a ‘point in
time’ sample. Data logger system?

Fix both references into a frame. Easier to carry.

Maybe multiple wet and dry references can be fixed in certain spots rather than
carrying them around. For example install them on the vine near a G-Bug system or a
weather station. People can download the data and take a picture at the same time.
This could help this app be more acceptable to the industry.

Suggest to create app that works without reference leaves.

Would like the app to locate the block by GPS. Once you take a photo, the block
name automatically pops up.

The final version of the app should give users the opportunity to send the spreadsheet
(.CSV?) with the results via email.

The final version should also have clearer clues about how to move from one screen
to the other, e.g. how to move back from the results screen to the initial screen.

Too busy to have time to test it. Only used once during the season, weather during
season not conducive to stress development, so limited feedback.

Multiple cameras in different sites to provide logging could be considered.

Need to have less error and lag when using the App.

Making the references smaller in size and with smaller water bottle would help with
carrying and installing.

The app could send the image straight to the user’s computer with all of the
information. Save time downloading the image from the phone.

Could temperatures of wet and dry references be pre-loaded in to the app to remove
the need for adding the references to the canopy every time?
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Appendix 6: Budget reconciliation
The End of Project Financial Statement was submitted online via Wine Australia’s Clarity Investment
Management System.
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